3.1208 \(\int \sqrt{a+a \cos (c+d x)} (A+C \cos ^2(c+d x)) \sec ^{\frac{3}{2}}(c+d x) \, dx\)

Optimal. Leaf size=137 \[ -\frac{a (2 A-C) \sin (c+d x)}{d \sqrt{\sec (c+d x)} \sqrt{a \cos (c+d x)+a}}+\frac{2 A \sin (c+d x) \sqrt{\sec (c+d x)} \sqrt{a \cos (c+d x)+a}}{d}+\frac{\sqrt{a} C \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)} \sin ^{-1}\left (\frac{\sqrt{a} \sin (c+d x)}{\sqrt{a \cos (c+d x)+a}}\right )}{d} \]

[Out]

(Sqrt[a]*C*ArcSin[(Sqrt[a]*Sin[c + d*x])/Sqrt[a + a*Cos[c + d*x]]]*Sqrt[Cos[c + d*x]]*Sqrt[Sec[c + d*x]])/d -
(a*(2*A - C)*Sin[c + d*x])/(d*Sqrt[a + a*Cos[c + d*x]]*Sqrt[Sec[c + d*x]]) + (2*A*Sqrt[a + a*Cos[c + d*x]]*Sqr
t[Sec[c + d*x]]*Sin[c + d*x])/d

________________________________________________________________________________________

Rubi [A]  time = 0.43131, antiderivative size = 137, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 5, integrand size = 37, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.135, Rules used = {4221, 3044, 2981, 2774, 216} \[ -\frac{a (2 A-C) \sin (c+d x)}{d \sqrt{\sec (c+d x)} \sqrt{a \cos (c+d x)+a}}+\frac{2 A \sin (c+d x) \sqrt{\sec (c+d x)} \sqrt{a \cos (c+d x)+a}}{d}+\frac{\sqrt{a} C \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)} \sin ^{-1}\left (\frac{\sqrt{a} \sin (c+d x)}{\sqrt{a \cos (c+d x)+a}}\right )}{d} \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[a + a*Cos[c + d*x]]*(A + C*Cos[c + d*x]^2)*Sec[c + d*x]^(3/2),x]

[Out]

(Sqrt[a]*C*ArcSin[(Sqrt[a]*Sin[c + d*x])/Sqrt[a + a*Cos[c + d*x]]]*Sqrt[Cos[c + d*x]]*Sqrt[Sec[c + d*x]])/d -
(a*(2*A - C)*Sin[c + d*x])/(d*Sqrt[a + a*Cos[c + d*x]]*Sqrt[Sec[c + d*x]]) + (2*A*Sqrt[a + a*Cos[c + d*x]]*Sqr
t[Sec[c + d*x]]*Sin[c + d*x])/d

Rule 4221

Int[(u_)*((c_.)*sec[(a_.) + (b_.)*(x_)])^(m_.), x_Symbol] :> Dist[(c*Sec[a + b*x])^m*(c*Cos[a + b*x])^m, Int[A
ctivateTrig[u]/(c*Cos[a + b*x])^m, x], x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[m] && KnownSineIntegrandQ[u,
 x]

Rule 3044

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)*((A_.) + (C_.)*s
in[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> -Simp[((c^2*C + A*d^2)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*(c + d*Sin[
e + f*x])^(n + 1))/(d*f*(n + 1)*(c^2 - d^2)), x] + Dist[1/(b*d*(n + 1)*(c^2 - d^2)), Int[(a + b*Sin[e + f*x])^
m*(c + d*Sin[e + f*x])^(n + 1)*Simp[A*d*(a*d*m + b*c*(n + 1)) + c*C*(a*c*m + b*d*(n + 1)) - b*(A*d^2*(m + n +
2) + C*(c^2*(m + 1) + d^2*(n + 1)))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, C, m}, x] && NeQ[b
*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] &&  !LtQ[m, -2^(-1)] && (LtQ[n, -1] || EqQ[m + n + 2, 0
])

Rule 2981

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.
) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(-2*b*B*Cos[e + f*x]*(c + d*Sin[e + f*x])^(n + 1))/(d*f*(2*n + 3)*Sqr
t[a + b*Sin[e + f*x]]), x] + Dist[(A*b*d*(2*n + 3) - B*(b*c - 2*a*d*(n + 1)))/(b*d*(2*n + 3)), Int[Sqrt[a + b*
Sin[e + f*x]]*(c + d*Sin[e + f*x])^n, x], x] /; FreeQ[{a, b, c, d, e, f, A, B, n}, x] && NeQ[b*c - a*d, 0] &&
EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] &&  !LtQ[n, -1]

Rule 2774

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/Sqrt[(d_.)*sin[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[-2/f, Su
bst[Int[1/Sqrt[1 - x^2/a], x], x, (b*Cos[e + f*x])/Sqrt[a + b*Sin[e + f*x]]], x] /; FreeQ[{a, b, d, e, f}, x]
&& EqQ[a^2 - b^2, 0] && EqQ[d, a/b]

Rule 216

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSin[(Rt[-b, 2]*x)/Sqrt[a]]/Rt[-b, 2], x] /; FreeQ[{a, b}
, x] && GtQ[a, 0] && NegQ[b]

Rubi steps

\begin{align*} \int \sqrt{a+a \cos (c+d x)} \left (A+C \cos ^2(c+d x)\right ) \sec ^{\frac{3}{2}}(c+d x) \, dx &=\left (\sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \frac{\sqrt{a+a \cos (c+d x)} \left (A+C \cos ^2(c+d x)\right )}{\cos ^{\frac{3}{2}}(c+d x)} \, dx\\ &=\frac{2 A \sqrt{a+a \cos (c+d x)} \sqrt{\sec (c+d x)} \sin (c+d x)}{d}+\frac{\left (2 \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \frac{\sqrt{a+a \cos (c+d x)} \left (\frac{a A}{2}-\frac{1}{2} a (2 A-C) \cos (c+d x)\right )}{\sqrt{\cos (c+d x)}} \, dx}{a}\\ &=-\frac{a (2 A-C) \sin (c+d x)}{d \sqrt{a+a \cos (c+d x)} \sqrt{\sec (c+d x)}}+\frac{2 A \sqrt{a+a \cos (c+d x)} \sqrt{\sec (c+d x)} \sin (c+d x)}{d}+\frac{1}{2} \left (C \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \frac{\sqrt{a+a \cos (c+d x)}}{\sqrt{\cos (c+d x)}} \, dx\\ &=-\frac{a (2 A-C) \sin (c+d x)}{d \sqrt{a+a \cos (c+d x)} \sqrt{\sec (c+d x)}}+\frac{2 A \sqrt{a+a \cos (c+d x)} \sqrt{\sec (c+d x)} \sin (c+d x)}{d}-\frac{\left (C \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \operatorname{Subst}\left (\int \frac{1}{\sqrt{1-\frac{x^2}{a}}} \, dx,x,-\frac{a \sin (c+d x)}{\sqrt{a+a \cos (c+d x)}}\right )}{d}\\ &=\frac{\sqrt{a} C \sin ^{-1}\left (\frac{\sqrt{a} \sin (c+d x)}{\sqrt{a+a \cos (c+d x)}}\right ) \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}}{d}-\frac{a (2 A-C) \sin (c+d x)}{d \sqrt{a+a \cos (c+d x)} \sqrt{\sec (c+d x)}}+\frac{2 A \sqrt{a+a \cos (c+d x)} \sqrt{\sec (c+d x)} \sin (c+d x)}{d}\\ \end{align*}

Mathematica [A]  time = 0.267348, size = 100, normalized size = 0.73 \[ \frac{\sec \left (\frac{1}{2} (c+d x)\right ) \sqrt{\sec (c+d x)} \sqrt{a (\cos (c+d x)+1)} \left (2 \sin \left (\frac{1}{2} (c+d x)\right ) (2 A+C \cos (c+d x))+\sqrt{2} C \sin ^{-1}\left (\sqrt{2} \sin \left (\frac{1}{2} (c+d x)\right )\right ) \sqrt{\cos (c+d x)}\right )}{2 d} \]

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[a + a*Cos[c + d*x]]*(A + C*Cos[c + d*x]^2)*Sec[c + d*x]^(3/2),x]

[Out]

(Sqrt[a*(1 + Cos[c + d*x])]*Sec[(c + d*x)/2]*Sqrt[Sec[c + d*x]]*(Sqrt[2]*C*ArcSin[Sqrt[2]*Sin[(c + d*x)/2]]*Sq
rt[Cos[c + d*x]] + 2*(2*A + C*Cos[c + d*x])*Sin[(c + d*x)/2]))/(2*d)

________________________________________________________________________________________

Maple [A]  time = 0.193, size = 185, normalized size = 1.4 \begin{align*}{\frac{\cos \left ( dx+c \right ) }{d \left ( 1+\cos \left ( dx+c \right ) \right ) } \left ( C\sqrt{{\frac{\cos \left ( dx+c \right ) }{1+\cos \left ( dx+c \right ) }}}\arctan \left ({\frac{\sin \left ( dx+c \right ) }{\cos \left ( dx+c \right ) }\sqrt{{\frac{\cos \left ( dx+c \right ) }{1+\cos \left ( dx+c \right ) }}}} \right ) \cos \left ( dx+c \right ) +C\sqrt{{\frac{\cos \left ( dx+c \right ) }{1+\cos \left ( dx+c \right ) }}}\arctan \left ({\frac{\sin \left ( dx+c \right ) }{\cos \left ( dx+c \right ) }\sqrt{{\frac{\cos \left ( dx+c \right ) }{1+\cos \left ( dx+c \right ) }}}} \right ) +C\cos \left ( dx+c \right ) \sin \left ( dx+c \right ) +2\,A\sin \left ( dx+c \right ) \right ) \left ( \left ( \cos \left ( dx+c \right ) \right ) ^{-1} \right ) ^{{\frac{3}{2}}}\sqrt{a \left ( 1+\cos \left ( dx+c \right ) \right ) }} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A+C*cos(d*x+c)^2)*sec(d*x+c)^(3/2)*(a+a*cos(d*x+c))^(1/2),x)

[Out]

1/d*(C*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*arctan(sin(d*x+c)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)/cos(d*x+c))*cos(d
*x+c)+C*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*arctan(sin(d*x+c)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)/cos(d*x+c))+C*co
s(d*x+c)*sin(d*x+c)+2*A*sin(d*x+c))*cos(d*x+c)*(1/cos(d*x+c))^(3/2)*(a*(1+cos(d*x+c)))^(1/2)/(1+cos(d*x+c))

________________________________________________________________________________________

Maxima [B]  time = 2.2243, size = 1202, normalized size = 8.77 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+C*cos(d*x+c)^2)*sec(d*x+c)^(3/2)*(a+a*cos(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

1/4*((2*(cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*(cos(1/2*arctan2(sin(2*d*x +
2*c), cos(2*d*x + 2*c) + 1))*sin(d*x + c) - (cos(d*x + c) - 1)*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2
*c) + 1)))*sqrt(a) + sqrt(a)*(arctan2(-(cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4
)*(cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))*sin(d*x + c) - cos(d*x + c)*sin(1/2*arctan2(sin(2*
d*x + 2*c), cos(2*d*x + 2*c) + 1))), (cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*
(cos(d*x + c)*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)) + sin(d*x + c)*sin(1/2*arctan2(sin(2*d*
x + 2*c), cos(2*d*x + 2*c) + 1))) + 1) - arctan2(-(cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c
) + 1)^(1/4)*(cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))*sin(d*x + c) - cos(d*x + c)*sin(1/2*arc
tan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))), (cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c)
+ 1)^(1/4)*(cos(d*x + c)*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)) + sin(d*x + c)*sin(1/2*arcta
n2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))) - 1) - arctan2((cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2
*d*x + 2*c) + 1)^(1/4)*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)), (cos(2*d*x + 2*c)^2 + sin(2*d
*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)) + 1) + ar
ctan2((cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*sin(1/2*arctan2(sin(2*d*x + 2*c
), cos(2*d*x + 2*c) + 1)), (cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*cos(1/2*ar
ctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)) - 1)))*C + 8*A*(sqrt(2)*sqrt(a)*sin(d*x + c)/(cos(d*x + c) + 1)
 - sqrt(2)*sqrt(a)*sin(d*x + c)^3/(cos(d*x + c) + 1)^3)/((sin(d*x + c)/(cos(d*x + c) + 1) + 1)^(3/2)*(-sin(d*x
 + c)/(cos(d*x + c) + 1) + 1)^(3/2)))/d

________________________________________________________________________________________

Fricas [A]  time = 1.57315, size = 285, normalized size = 2.08 \begin{align*} -\frac{{\left (C \cos \left (d x + c\right ) + C\right )} \sqrt{a} \arctan \left (\frac{\sqrt{a \cos \left (d x + c\right ) + a} \sqrt{\cos \left (d x + c\right )}}{\sqrt{a} \sin \left (d x + c\right )}\right ) - \frac{{\left (C \cos \left (d x + c\right ) + 2 \, A\right )} \sqrt{a \cos \left (d x + c\right ) + a} \sin \left (d x + c\right )}{\sqrt{\cos \left (d x + c\right )}}}{d \cos \left (d x + c\right ) + d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+C*cos(d*x+c)^2)*sec(d*x+c)^(3/2)*(a+a*cos(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

-((C*cos(d*x + c) + C)*sqrt(a)*arctan(sqrt(a*cos(d*x + c) + a)*sqrt(cos(d*x + c))/(sqrt(a)*sin(d*x + c))) - (C
*cos(d*x + c) + 2*A)*sqrt(a*cos(d*x + c) + a)*sin(d*x + c)/sqrt(cos(d*x + c)))/(d*cos(d*x + c) + d)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+C*cos(d*x+c)**2)*sec(d*x+c)**(3/2)*(a+a*cos(d*x+c))**(1/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int{\left (C \cos \left (d x + c\right )^{2} + A\right )} \sqrt{a \cos \left (d x + c\right ) + a} \sec \left (d x + c\right )^{\frac{3}{2}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+C*cos(d*x+c)^2)*sec(d*x+c)^(3/2)*(a+a*cos(d*x+c))^(1/2),x, algorithm="giac")

[Out]

integrate((C*cos(d*x + c)^2 + A)*sqrt(a*cos(d*x + c) + a)*sec(d*x + c)^(3/2), x)